

SYMOBIO

Landfußabdruck und Agrarmodell

- Methoden und zu erwartende Ergebnisse -

Statuskonferenz "Auf dem Weg in eine nachhaltige Bioökonomie: Bausteine für ein Monitoring"

Öko-Institut

Dr. Hannes Böttcher (Koordination), Dr. Klaus Hennenberg, Kirsten Wiegmann, Margarethe Scheffler, Katja Hünecke, Florian Antony

Berlin, 20. März 2018

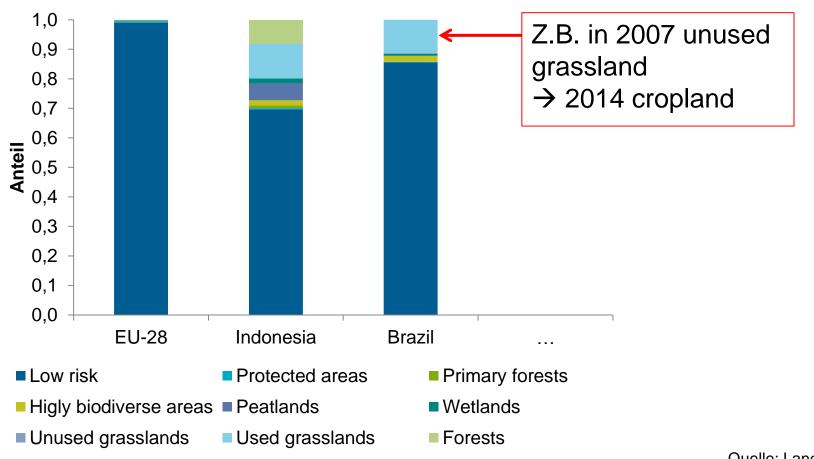
Landfußabdruck – global Perspektive –

- Ziele -
- Berechnung des globalen "Landfußabdrucks"
- Indikatoren sollen berücksichtigen:
 - Biodiversität
 - Boden
 - Differenzierung nach Ackerland und Grünland, Nahrung, Futter, stoffliche und energetische Nutzung
- Analyse erwartbarer Korridore anhand von Treibern
 - → Auswirkungen auf Biodiversität und Boden

- Indikatoren -

- Herkunft und Art der in Deutschland genutzten Biomasse
 - Feldfrucht(-gruppen), Milch/Fleisch, Futter
 - Ackerland/Grünland
 - Produktgruppen / Summe f
 ür Produktgruppen
 - Pro Kopf Verbrauch (Deutschland, zum Vergleich global)
- Auswirkungen auf
 - Biodiversität (Primärwälder, Schutzgebiete, highly biodiverse land, Torfmoor, Feuchtgebiete, genutztes/ungenutztes Grünland, Wald)
 - Boden (suitability maps)
- Selbstversorgungsgrad (inländische Produktion, Import, Export)

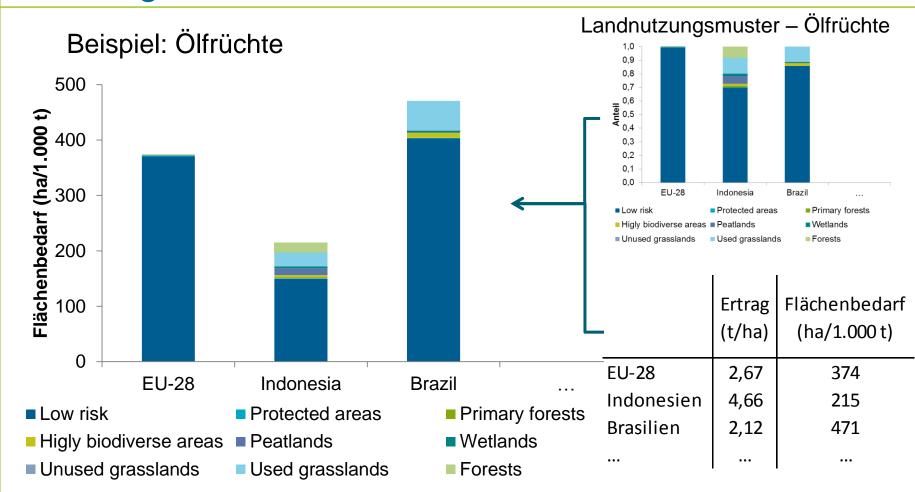
- Ansatz -


- Schritt 1: Landnutzungsmuster je Feldfrucht in Ländern/Regionen
- Schritt 2: Ertrag → Flächenbedarf (ha/t) je Feldfrucht in Ländern/Regionen
- Schritt 3: Nutzung in Deutschland → gewichtetes Mittel des Flächenbedarfs
 - → Beispiel: Ölfrüchte
- Schritt 4: Allokation falls nötig (z.B. Rapsöl / Presskuchen)
- Schritt 5: Gemischte Produkte (e.g. Biokraftstoffe aus verschieden Feldfrüchten und Ländern/Regionen)

ABER: Begrenzte Auflösung aufgrund globaler Daten und Modellierung

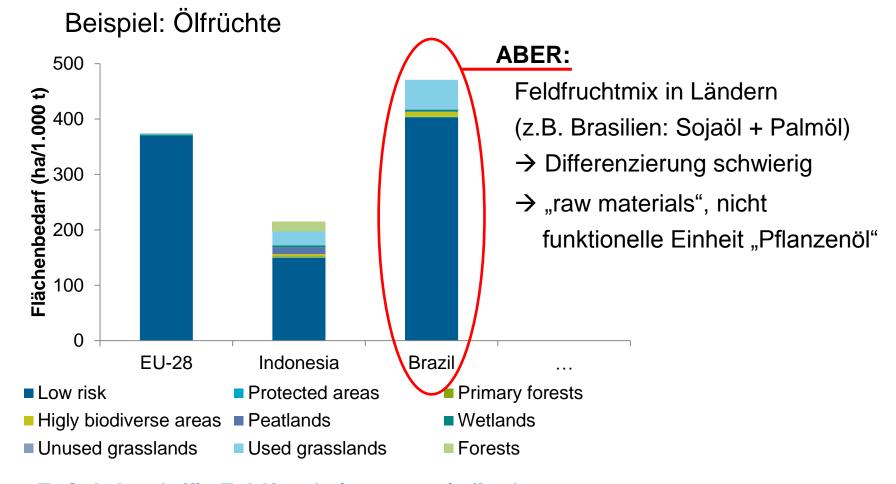
Landnutzungsmuster je Feldfrucht und Land -

Beispiel: Ölfrüchte (Landnutzungsänderung 2007 – 2014)



Quelle: LandSHIFT

- Ertrag und Flächenbedarf -


Fußabdruck für Feldfrucht(-gruppen), final genutzt in DE (Perspektive Herkunftsland/Region)

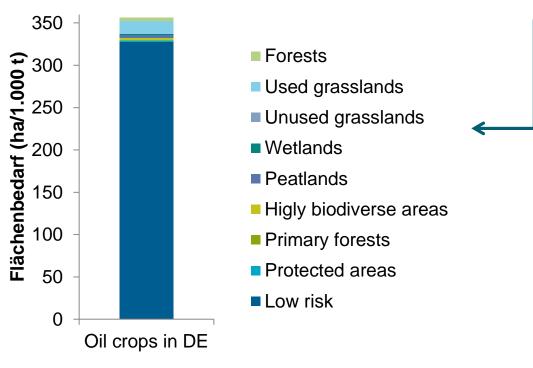
→ Flächenbedarf * Menge an Feldfrucht (DE)

Quelle: LandSHIFT, ExioBase

- Ertrag und Flächenbedarf -

Fußabdruck für Feldfrucht(-gruppen), final genutzt in DE (Perspektive Herkunftsland/Region)

→ Flächenbedarf * Menge an Feldfrucht (DE)


Quelle: LandSHIFT, ExioBase

- Gewichtetes Mittel des Flächenbedarfs -

Gewichtetes Mittel des Flächenbedarfs

Beispiel: Ölfrüchte, genutzt in 2009

Flächenbedarf – Ölfrüchte **8** 400 (F) 300 Flächenbedarf (EU-28 Indonesia Brazil Protected areas Low risk Primary forests ■ Higly biodiverse areas
■ Peatlands Wetlands Unused grasslands Used grasslands Forests Ölfrüchte, in Deutschland genutzt Mio. t in DE **EU-28** 8,12 Indonesien 2,98 Brasilien 2,46

Fußabdruck für Feldfrucht(-gruppen), final genutzt in DE (globale Perspektive)

→ Gewichtetes Mittel des Flächenbedarfs (DE) * Feldfrucht (DE)

Quelle: LandSHIFT,

ExioBase

- Zu erwartende Ergebnisse -

- Landfußabdruck für Feldfrüchte, die in Deutschland konsumiert werden.
 - Global konsistente Auswertung
 - Differenzierung zu Auswirkungen auf Biodiversität und Boden
 - Auswertung f
 ür Deutschland als Summe aller Importe
 - Auswertung für einzelne Länder und Produktgruppen wird angestrebt

Agrarmodell (Deutsche Perspektive)

Agrarmodell Ziele und Herausforderungen

Ziele:

- Entwicklung eines Landwirtschaftsmodell für Deutschland
- Anbinden des Modells an die globale Ökonomie-Modellierung
- Modellieren von Indikatoren, Berücksichtigung identifizierter Treiber

Herausforderungen:

- Agentenbasiertes Agrarmodel "FABio" (Software AnyLogic)
- Erweiterung von FABio :
 - Landkreise als Agenten → up-scaling von Produktionssystemen
 - Anbindung der Fruchtfolgewahl an die Nachfrage aus dem globalen Ökonomiemodell
 - Entwicklung zusätzlicher Indikatoren

Agrarmodell Modellstruktur – Agenten und Parameter

18 Feldfrüchte, 1 Grünlandtyp, Brache, Blühstreifen, Winterzwischenfrucht

- Milchvieh (64 Untertypen nach Milchleistung und Futterration)
- Rinder, Schweine, Hühner, etc. in Arbeit

Landkreis

Feldfrüchte

- Art
- Grünland
- Ertrag
- Deckungbeitrag
- Düngergabe
- Nährstoffgehalt

- ..

Flächen

- AL/GL
- Produktivität
- Fruchtfolge
- Ertragsfunktion
- Düngegabe (org./anorg.)
- GHG-Emissionen
- C-Saldo
- N-Saldo
- ..

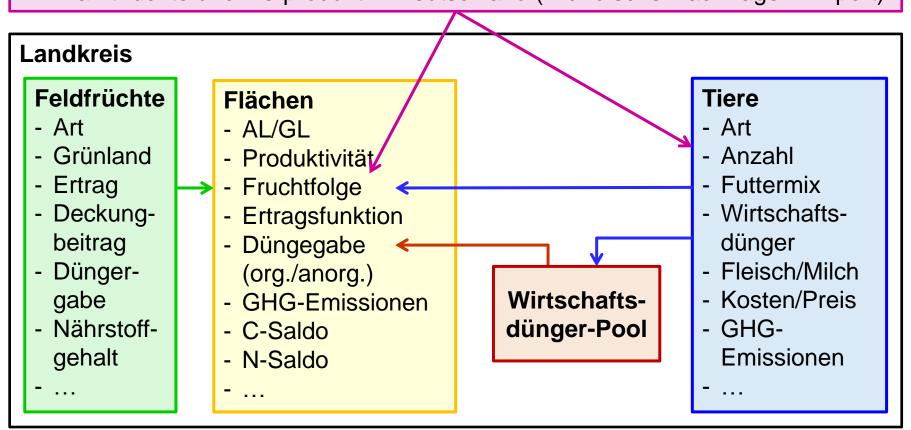
Tiere

- Art
- Anzahl
- Futtermix
- Wirtschaftsdünger
- Fleisch/Milch
- Kosten/Preis
- GHG-
- Emissionen

Geplante Auflösung: 100 ha/Area

→ ca. 200.000 Area

Gülle, Festmist (in Arbeit)

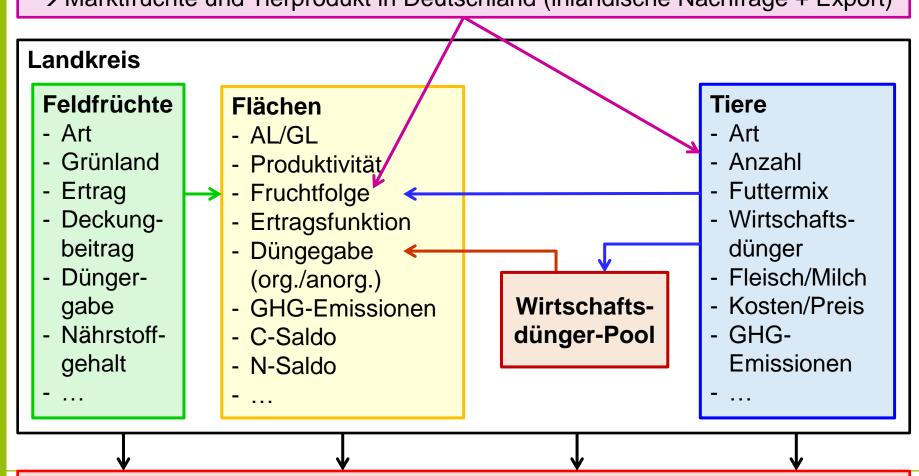

Wirtschafts-

dünger-Pool

Agrarmodell Modellstruktur – Agenten und Parameter

Ergebnisse der ökonomischen Modellierung / historische Daten

→ Marktfrüchte und Tierprodukt in Deutschland (inländische Nachfrage + Export)



Agrarmodell Modellstruktur – Agenten und Parameter

Ergebnisse der ökonomischen Modellierung / historische Daten

→ Marktfrüchte und Tierprodukt in Deutschland (inländische Nachfrage + Export)

Agrarmodell

- bisherige Indikatoren in FABio -

Ressource	Indikator	Produktionssystem	
		Pflanzenbau	Tierhaltung
Luft	Treibhausgase	direkt	direkt
Wasser	Wasserqualität (N-Überhang)	direkt	indirekt (Futterbau)
Boden	Stickstoffsaldo	direkt	indirekt (Futterbau)
	Humussaldo	direkt	indirekt (Futterbau)
	Flächenbedarf	direkt	indirekt (Futterbau)
Biodiversität	Biotopwert	direkt	indirekt (Futterbau)
Ökonomie	Deckungsbeitrag	direkt	direkt
	Produktion	direkt	direkt

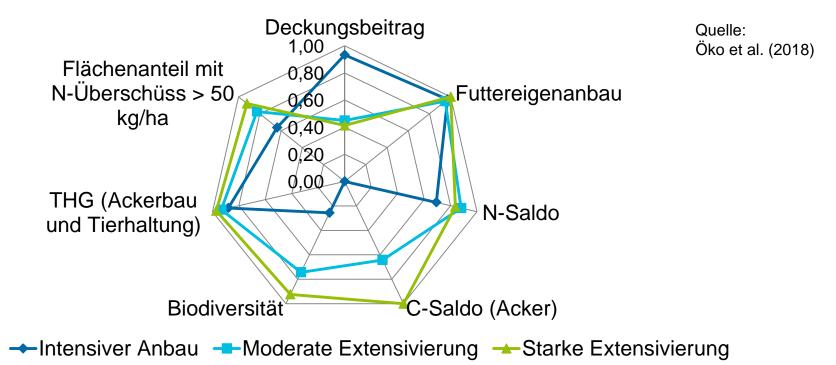
Agrarmodell

- Einstellungen und Szenarien -

Wichtige Einstellungen:

- Fruchtfolgeregeln
- Anteil Eigenfutteranbau
- Niveau der N-Gabe
- Rate der Strohentnahme
- Anteil Blühstreifen, Brache und Winterzwischenfrucht

Korridor-Analyse – Trendannahmen zu:


- innovative Anbausysteme
- Änderung der Ernährungsmuster (insbesondere Tierprodukte)
- stoffliche/energetische Biomassenutzung
- zukünftige Technologien (z.B. Aquakulturen)

Agrarmodell

- Zu erwartende Ergebnisse -
- Bewertung der Modellergebnisse zur Landwirtschaft anhand von Indikatoren (Deutschland / Landkreise)
- Vergleichbare Darstellung z.B. über Normierung

Thank you for your attention!

Dr. Hannes Böttcher

Senior Researcher
Teilprojektleitung SYMOBIO

Öko-Institut e.V.

Energie & Klimaschutz Büro Berlin Schicklerstraße 5-7 10179 Berlin

Telefon: +49 30 40 50 85-389 E-Mail: h.boettcher@oeko.de

Dr. Klaus Hennenberg

Senior Researcher

Öko-Institut e.V.

Energie & Klimaschutz Büro Darmstadt Rheinstraße 95 64295 Darmstadt

Telefon: +49 61 51 81 91-177 E-Mail: k.hennenberg@oeko.de

